
Snapshots for 1KHz Readings
Acnet FTPMAN addition

Mon, Aug 9, 1999

This note develops a scheme for adding snapshot mode support for the IRM 1KHz digitizer to
the Acnet FTPMAN protocol. (The current FTPM local application provides continuous mode
support for the 1KHz digitizer, but it does not yet give snapshot support.) The current
motivation for doing this is that a special Acnet console application program uses the
snapshot protocol to collect data that it then performs a Fast Fourier Transform (FFT) on to
give a frequency spectrum. The VLHC Tunnel Boring Machine instrumentation project may
want to use this program to analyze vibration data sampled from an accelerometer attached
to the TBM. The end objective is to provide such FFT data via the Web.

Currently, FTPM supports snapshots for two cases: the Swift digitizers that cover the
digitize rate range 6KHz–800KHz, and the Quick digitizers that cover rates up to 4MHz, or
even 10MHz. This would add a third type of digitizer, the usual 1KHz rate provided by the
analog interface board mounted inside the IRM chassis. It digitizes 64 A/D channels in 800 µs
(12.5 µs/channel) every millisecond, storing up the data in a 64-Kbyte circular buffer on the
IndustryPack (IP) board that is connected to the analog interface board.

Support for snapshots requires that the data that is captured by the hardware be saved
into an allocated buffer, so that the console application can access the data at its leisure. Once
a snapshot request is made, the front end returns frequent status information on the progress
of the snapshot. When it has learned from this status that the data has been measured and
captured, then it asks for the data to do with it as it will.

The first request that comes from the console is one that asks the front end, "what can
you do for me for this device," which it describes via an SSDN eight-byte structure. For IRMs
this structure designates the node and channel number. If the channel is in the range
0100–013F, then by convention it matches the 64 channels that are interfaced via the 1KHz
digitizer. (A second range 0140–017F can be used for an additional 64 channels, but this
option has seldom been exercised.)

In answer to the "what can you do for me" question, the front end returns a code
number for continuous mode and a second code number for snapshot mode. The console
application programmer, Jim Smedinghoff, assigns these numbers as needed. In this case, we
need two more numbers. One would mean that 1KHz snapshot support is available, and the
other means that both 1KHz and Swift snapshot supports are available for this device. The
console program could, if 1KHz support were indicated, ask for up to 4096 points of data
measured at rates up to 1KHz. The lowest rate might be 10Hz, say. The data to be collected
would come out of the 64K-byte circular buffer memory, which "wraps" every 512 ms, or
about 2 Hz.

There is already support for 1KHz data acquisition using a special listype, in which
one makes a continuous mode request, specifying a trigger clock event. The logic that
supports such a request delivers time stamps in 10 µs units relative to the indicated clock
event. (This can be done because all clock events are time-stamped.) As a means of
simplifying providing support for snapshots using the 1KHz digitizer, we may utilize this
underlying support. This means that, associated with each device, we would allocate a block
of memory to hold the digitized waveform for subsequent collection by the console
application. This is already done in the current snapshot cases, because the data has to be
captured and held for subsequent pickup by the host application. FTPM would make an
internal request for such data using the special listype. It would collect the results at 15 Hz

(or 10 Hz) and examine the time stamps. Once the time stamp for a data point is detected that
exceeds the requested delay, the data would begin to be captured into the buffer. This
capturing would continue, cycle after cycle, until the buffer is full of the requested number of
data points, at which time the next status reported should indicate that the data is ready.

In order to take advantage of the current support for this 1KHz data, there is a matter
of specifying the desired rate. With such a data request, one does not specify a rate directly,
but rather indirectly by a combination of the collection rate and the buffer size specified.
Now, the collection rate may as well be every cycle, either 15 Hz or 10 Hz. The buffer size to
be used should then be

size = 8 + 4*points,
where

points = (cycle length in half ms)*(rate in Hz)/2000

Rates beyond 1000 Hz should not be supported in this way. Note that a rate that is not
a sub-multiple of 1000 Hz will result in data that is not evenly spaced. The raw data is
collected at 1 KHz. If one specifies 300 Hz, one should expect that the data points that will be
sampled to produce the data requested would be every 3rd or 4th raw data point. The
underlying software fills the buffer with data so as to bring the requester "up-to-date." Even if
the requested rate is 1 KHz, a data point might be skipped, or even duplicated, if there is any
jitter in the time when the data is collected to satisfy the request. Without doing this, there is
danger of slowly being left behind. The extra 8 bytes in the formula for size allow for the
header that consists of two longwords. The first specifies a 32-bit base time (in 10 µs units)
that is to be added to the 16-bit time stamp associated with each 16-bit data value to give the
32-bit time stamp for that point. The second longword, when nonzero, implies that
somewhere within the set of data to follow, the triggering event recurred, an its value
specifies at what time that happened. If one were plotting the data, one may want to stop
plotting data points on the right and return to the baseline. The corrected time relative to the
event for all data in the buffer beyond that point, then, would be obtained by subtracting this
second long word value.

The current snapshot support for Swift digitizers, when it returns the actual waveform
data, returns it without time stamps. This is a problem for the underlying support for 1KHz
data, as the notion of bringing the requester up-to-date can sometimes result in a widely-
varying time stamps between successive data points. It may be useful, therefore, to revisit the
question of sampling 1 KHz data from the circular buffer. We could restrict the user's rate
requests to be sub-multiples of 1000 Hz, such as 500, 333, 250, 200, 166, 142, 125, 111, 100, 90,
83, 76, 71, 66, 62, 31,... and 15. It might be simpler just to select 500, 250, 125, 62, 31, 15, 7, 3,
and 1.

To deliver the required data points, sampled from the circular buffer by fixed
distances in time, we can review each data point, along with its time stamp and the time
stamp of the triggering event plus the delay specified in the request. when we detect points
whose time stamp indicates they are beyond the delay time past the trigger event time, then
we save each and every point up to the number of points requested. (If the trigger event
should recur while this is going on, we can ignore it, as the requester may wish to capture
data over the course of many such triggers, especially at slow data collection rates.) The time
stamps need not be delivered to the requester, however. There should also be a way to
capture data without a triggering event or delay.

Given a request for such data, check the channel number against the 1KHz range, and
get the base of the circular buffer memory plus twice the channel number as an offset. Use

Snapshots for 1KHz Readings p. 2

the memory pointer register to find where the current block is, and get the time of the
completion of that 64-channel block's digitization. Beginning on the next cycle, and on
subsequent cycles, monitor the successive time stamps, comparing against the last event time
plus delay to see when a time stamp is found that exceeds that time. When this happens, and
the previous point had not exceeded that time, enable collection of successive data points.
Continue this procedure cycle after cycle until the requested data buffer is full. Change the
status to complete and hold the buffer for pickup by host requests.

To enable processing of such snapshots in a node, a new CINFO table entry may be
used, using a type value of 3. The entry can be 16 bytes long and include the register base
address, the circular buffer memory base address, and a spare longword.

Variables, etc, needed for processing 1KHz snapshots:

kHzTime Length of time between successive digitize interrupts, in µs
circBufP Ptr to circular buffer of 64K bytes
circBufO Offset into circular buffer of last point
eventDly Time of event plus delay
eventTrg Triggering event
dlyTime Delay time in µs

Details
When processing a timing request in NServer, for the case of 1KHz frequency or less,

consider neither the case of Swift nor Quick digitizers. Check if kHz digitizer is appropriate
before deciding that no snapshot support is available. This check will require an entry to be
placed into the CINFO table, just as the other cases do. Before calling CINFOEntry to do the
search for a matching type and channel number, mask off the least 6 bits of the channel
number. This will allow for only a single entry to be used to support all 64 channels. This
hardware supports all or none, anyway. An example entry might be as follows:

10 03 0100 FFF58300 Entry size, type, register base address
73000000 00000000 Memory base address, spare longword (n.u.)

Snapshots for 1KHz Readings p. 3

